Mapping Your Path – Using Value Stream Maps to Improve

2020 Washington State Government Lean Transformation Conference
Core Objectives

• Recognize and read a value stream map
• Describe the purposes of and differences between value stream and process maps
• Build and use value stream maps to improve
What is Lean?

It is WORK SCIENCE based on flow.

Goal: deliver maximum value to the customer using the least amount of energy.

Concept credit: Joanne Gaudet & France Bergeron
What is Flow?

To flow means to move along in a steady, continuous, predictable fashion.

In Lean, we pursue continuous flow, where value reaches the customer by passing quickly and easily through a steady sequence of value-added activities.
5 Lean Principles

- Define Value
- Map Value Stream
- Create Flow
- Establish Pull
- Pursue Perfection
How to Define Value

1. Identify product
2. Identify end-users
3. Ask end-users to define value and product requirements
5 Lean Principles

Define Value

Map Value Stream

Pursue Perfection

Establish Pull

Create Flow
Poll

When it comes to value stream mapping, I would say:

• I’m here to learn what it is.
• I know about it, but haven’t experienced it.
• I’ve participated in it.
• I’ve facilitated it.
What is a Value Stream?

All the materials and work it takes to create and deliver a product to the customer.

What is a Value Stream Map?

A drawing that shows the flow of material and information through the production process.
Why Draw a Value Stream Map?

1. See flow across the system – to find & remove barriers
2. Share understanding – to make better decisions
3. Clarify value – to identify waste
4. Connect each function to the customer – to keep them in mind
5. Evaluate the work from objective and quantitative point of view – to measure performance and changes
6. Manage and continually improve the system of work – to stay in business
Value Stream Map vs. Process Map

Value Stream Maps

- High-level (zoom out)
- Product and information flow

Process Maps (Flowcharts)

- Detailed (zoom in)
- Activities and decisions

Image: https://upload.wikimedia.org/wikipedia/commons/9/99/ValueStreamMapParts.png (Daniel Penfield)
Value Stream Map vs. Process Map (Flowchart)

<table>
<thead>
<tr>
<th>Map element</th>
<th>Value Stream</th>
<th>Flowchart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity/step</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Who performs activity/step</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Rework loops</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Decision points</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Inventory & queue points</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Defect rate</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Time elements</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Types of Value Stream Maps

Current State

Future State

Ideal State

Images: Copyright © 2012 Leanman
How to Build a Current State Value Stream Map

1. Map material flow
2. Map information flow
3. Add timeline and calculate process performance data
SIPOC Example: Licensee Data Entry
Map Material Flow

• Be the thing and walk the process – sketch reality
 • Identify major work activities: operator and process step
 • Identify inventory (inbox) queues
Material Flow Example: Licensee Data Entry

Licensee

Form reporting activity

Open & Batch Mail

Admin. Asst.

Scan & Log Forms

Scan Tech.

Enter Form Data

Data Tech.

Check Data in System

Senior Tech.

Release Data

Supervisor

Public Licensee Data

Public

Requirements:
- Easy to find
- Available w/in 7 days
- Accurate
Map Information Flow & Capture Data

- Be the thing and walk the process – try in reverse
 - Specify how the input is supplied
 - Identify electronic systems used to capture/transfer info.
 - Capture who gets information, how, and how often
Information Flow Example: Licensee Data Entry

Requirements:
- Easy to find
- Available w/in 7 days
- Accurate
Map Information Flow & Capture Data – cont’d

• Measure what’s happening
 • Capture data about time, quality, and customer demand
 • Note inventory and number of operators at workstations
• Identify quality issues and rework loops
• Optional: label the product between workstations
Data Example: Licensee Data Entry

Requirements:
- Easy to find
- Available within 7 days
- Accurate

Admin. Asst.: Open & Batch Mail
- Batch of Forms
 - C/T = 90 min
 - T/T = 7 min
 - IY = 90%

Scan Tech.: Scan & Log Forms
- Batch of Scanned Forms
 - C/T = 40 min
 - T/T = 5 min
 - IY = 95%

Data Tech.: Enter Form Data
- Batch of Entered Forms
 - C/T = 120 min
 - T/T = 15 min
 - IY = 97%

Senior Tech.: Check Data in System
- Batch of Entered Forms
 - C/T = 15 min
 - T/T = 8 min
 - IY = 93%

Supervisor: Release Data
- Batch of Entered Forms
 - C/T = 5 min
 - T/T = 5 min
 - IY = 100%

Licensee Database
- Forms
- Information

Public Licensee Data
- Database

Form reporting activity
- 18/day

Form Database
- 90 min
- 360 min

Licensee

Scan Tech.

Data Tech.

Senior Tech.

Supervisor

Licensee

Public

Requirements:
- Easy to find
- Available within 7 days
- Accurate
Add Timeline & Calculate Performance Data

• Draw timeline along bottom
 • Calculate process performance metrics:
 • Lead (total production) time: Cycle Time + Wait Time
 • Value-added time: Sum of value-adding Touch Time
 • Rolled throughput yield: Product of all Incoming Yields
Timeline Example: Licensee Data Entry

Requirements:
- Easy to find
- Available w/in 7 days
- Accurate
5 Lean Principles

- Define Value
- Map Value Stream
- Create Flow
- Establish Pull
- Pursue Perfection
Flow Analysis Example: Licensee Data Entry

Requirements:
- Easy to find
- Available w/in 7 days
- Accurate

Form Errors
Resorting Batches
NVA Work

Admin. Asst.
Open & Batch Mail
Scan & Log Forms
Enter Form Data
Check Data in System
Release Data

C/T = 90 min
T/T = 7 min
IY = 90%

C/T = 40 min
T/T = 5 min
IY = 95%

C/T = 120 min
T/T = 15 min
IY = 97%

C/T = 15 min
T/T = 15 min
IY = 93%

C/T = 5 min
T/T = 5 min
IY = 100%

RTY: 77.1%
VA/T: 40 min
L/T: 11.1 days
Solve Problems to Achieve Future State

Current State

Future State

- Produce to takt
- Eliminate waste
<table>
<thead>
<tr>
<th>Action taken</th>
<th>Operator</th>
<th>Process Step: Action taken</th>
<th>Operator: Role that performs this process step. List the number of operators if more than one. (Colors represent different roles involved)</th>
<th>Supplier or Customer</th>
<th>Start and end of process</th>
<th>Problem/source of waste and idea to improve</th>
<th>Database</th>
<th>Common Value Stream Mapping Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Time:</td>
<td>Operator</td>
<td>Total time required to complete a process step (includes touch time).</td>
<td>Time a product is actually being worked on.</td>
<td>Supplier or Customer</td>
<td>Start and end of process</td>
<td>Problem/source of waste and idea to improve</td>
<td>Database</td>
<td>Common Value Stream Mapping Symbols</td>
</tr>
<tr>
<td>Touch Time:</td>
<td>Operator</td>
<td>Percent of time that product from previous step is fit for use in current step (complete and accurate).</td>
<td>Time a product is actually being worked on.</td>
<td>Supplier or Customer</td>
<td>Start and end of process</td>
<td>Problem/source of waste and idea to improve</td>
<td>Database</td>
<td>Common Value Stream Mapping Symbols</td>
</tr>
<tr>
<td>Incoming Yield</td>
<td>Operator</td>
<td>Percent of time that product from previous step is fit for use in current step (complete and accurate).</td>
<td>Time a product is actually being worked on.</td>
<td>Supplier or Customer</td>
<td>Start and end of process</td>
<td>Problem/source of waste and idea to improve</td>
<td>Database</td>
<td>Common Value Stream Mapping Symbols</td>
</tr>
<tr>
<td>- Comments</td>
<td>Operator</td>
<td>Additional information related to process</td>
<td>Time a product is actually being worked on.</td>
<td>Supplier or Customer</td>
<td>Start and end of process</td>
<td>Problem/source of waste and idea to improve</td>
<td>Database</td>
<td>Common Value Stream Mapping Symbols</td>
</tr>
<tr>
<td>Queue (waiting) time for product or service to enter next process</td>
<td>Operator</td>
<td>Queue (waiting) time for product or service to enter next process</td>
<td>Time a product is actually being worked on.</td>
<td>Supplier or Customer</td>
<td>Start and end of process</td>
<td>Problem/source of waste and idea to improve</td>
<td>Database</td>
<td>Common Value Stream Mapping Symbols</td>
</tr>
<tr>
<td>Name of system that information flows to and/or from within value stream</td>
<td>Operator</td>
<td>Name of system that information flows to and/or from within value stream</td>
<td>Time a product is actually being worked on.</td>
<td>Supplier or Customer</td>
<td>Start and end of process</td>
<td>Problem/source of waste and idea to improve</td>
<td>Database</td>
<td>Common Value Stream Mapping Symbols</td>
</tr>
</tbody>
</table>

Symbols:
- **Supplier or Customer:** Start and end of process
- **Process:** Process Step: Action taken
- **Operator:** Operator: Role that performs this process step. List the number of operators if more than one. (Colors represent different roles involved)
- **Data Boxes:**
 - **Cycle Time:** Total time required to complete a process step (includes touch time).
 - **Touch Time:** Time a product is actually being worked on.
 - **Incoming Yield:** Percent of time that product from previous step is fit for use in current step (complete and accurate).
- **Comments:** Additional information related to process
- **Queue (waiting) time for product or service to enter next process**
- **Name of system that information flows to and/or from within value stream**
Common Value Stream Mapping Symbols

Material flow to Customer or from Supplier

Physical flow

Rework (location where defect starts rework)

Electronic flow

Iteration loop (between two processes or within one process)

Summary Metrics

Lead Time (LT): The total time a customer must wait to receive a product after placing an order (or initiating the process).

Rolled Throughput Yield (RTY): The probability that a single unit can pass through a series of steps free from defects. To calculate, multiply the IY for each step.

Handoffs: The number of time a product changes hands in a process on its way to being completed.

Rework Loops: When a work product contains errors (incomplete or inaccurate) and must be sent back upstream to be fixed.

Value Added : Non-Value Added (VA/NVA): For an activity to be value-added, it must meet all three of these criteria:
1) The customer must care about it.
2) It must change the fit, form, or function.
3) It must be done right the first time.
A Non-Value Added step is anything that does not meet these three criteria.
10 Mapping Pitfalls & How to Avoid Them

It’s a mistake to:

• Map only in a conference room
• Draw what supposedly happens
• Dive too deep into details (tasks)
• Follow operators
• Correct operators
• Jump to solutions
• Skip metrics
• Map solo or “stitch” maps together
• Stop at mapping
• Focus on making a beautiful map using technology

So, instead:

• Go and see firsthand
• Capture reality
• Think “high-level handoffs”
• Follow the product
• Observe, inquire, and seek to understand
• Note problems (pain)
• Measure what happens
• Map whole process together as a team
• Use maps as launch pad for action
• Draw – in pencil – the messy truth, and keep it dynamic (change it as you learn)
Additional Resources

- **Learning to See** by Jim Womack and Dan Jones

- “Value Stream Mapping – Helping Your Team See the Future State”
 - 2012 Lean Conference Presentation by Sarah Stuart, Impact Washington
 - Link to YouTube video:
 - https://www.youtube.com/watch?v=27OBzSEjHzA&feature=player_embedded
 - Link to slides: